Continuity estimates for the p-Laplace type equation

Gioconda Moscariello

Dipartimento di Matematica e Applicazioni ”R. Caccioppoli”
Università degli Studi di Napoli ”Federico II”

International Conference on Partial Differential Equations
January 11-15, 2016, Cebu, Philippines
1. Existence and uniqueness results - Continuity estimates
2. Stability estimates
3. An application

References

- Giannetti, Greco, Moscariello *Diff. Int. Eq.* (2013)
- Moscariello *To appear*
Let $\Omega \subseteq \mathbb{R}^N$, $N \geq 2$, be a Lipschitz bounded domain. Consider the problem

\begin{align}
\text{div } A(x, \nabla u) &= \text{div } h \quad \text{in } \Omega, \\
u &= 0 \quad \text{on } \partial \Omega,
\end{align}

where $A : \Omega \times \mathbb{R}^N \to \mathbb{R}^N$ is a Carathéodory vector field satisfying the following conditions for a. e. $x \in \Omega$ and all $\xi, \eta \in \mathbb{R}^N$

\begin{align*}
A(x, 0) &= 0 \\
\langle A(x, \xi) - A(x, \eta), \xi - \eta \rangle &\geq a |\xi - \eta|^2 (|\xi| + |\eta|)^{p-2} \\
|A(x, \xi) - A(x, \eta)| &\leq b |\xi - \eta| (|\xi| + |\eta|)^{p-2}
\end{align*}

where $p > 1$, $0 < a \leq b$.
\(h = (h^1, h^2, \ldots, h^N) \) is a vector field in \(L^s(\Omega, \mathbb{R}^N), 1 \leq s \leq q \), \(pq = p + q \).

If \(\max\{1, p - 1\} \leq r \leq p \) we say that

Definition 1

A function \(u \in W^{1, r}_0(\Omega) \) is a solution of (1) if

\[
\int_\Omega \langle A(x, \nabla u), \nabla \varphi \rangle \, dx = \int_\Omega \langle f, \nabla \varphi \rangle \, dx,
\]

for every \(\varphi \in C_0^\infty(\Omega) \).

If \(s \geq \frac{r}{p - 1} \) we can consider \(\varphi \in W^{1, \frac{r}{r-p+1}}(\Omega) \) with compact support.

For \(r < p \) such a solution may have ”infinite energy”.
$h = (h^1, h^2, \ldots, h^N)$ is a vector field in $L^s(\Omega, \mathbb{R}^N)$, $1 \leq s \leq q$, $pq = p + q$.

If $\max\{1, p - 1\} \leq r \leq p$ we say that

Definition 1

A function $u \in W^{1,r}_0(\Omega)$ is a solution of (1) if

$$\int_{\Omega} \langle A(x, \nabla u), \nabla \varphi \rangle \, dx = \int_{\Omega} \langle f, \nabla \varphi \rangle \, dx,$$

for every $\varphi \in C_0^\infty(\Omega)$.

If $s \geq r/(p - 1)$ we can consider $\varphi \in W^{1,\frac{r}{r-p+1}}(\Omega)$ with compact support.

For $r < p$ such a solution may have "infinite energy".
1 Existence and uniqueness

- $r = p$

 If $h \in L^q(\Omega, \mathbb{R}^N)$, $\exists! u \in W_0^{1,p}(\Omega)$ that solves (1).

 Leray-Lions 65, Browder 70.

- $r < p$, ”Existence”

 If $\text{div } h = f \in L^\gamma(\Omega)$, $\gamma \geq 1$

 $\exists u \in W_0^{1,1}(\Omega)$ that solves (1).

 Stampacchia 65, Brezis-Strauss 73.

 Boccardo–Galloüet 89 ($p > 2 - \frac{1}{N}$, $\gamma = 1$)

 Boccardo–Galloüet 2012 ($1 < p < 2 - \frac{1}{N}$, $\gamma = \frac{N}{Np-N+1}$)

 Murat 94, Alvino–Mercaldo 2008

 SOLA (solution obtained by approximation)

 Regularity results for such a solution have been developed by Mingione (2007,2010)
1 Existence and uniqueness

- $r = p$
 If $h \in L^q(\Omega, \mathbb{R}^N)$, \(\exists ! u \in W_0^{1,p}(\Omega) \) that solves (1).
 Leray-Lions 65, Browder 70.

- $r < p$, ”Existence”
 If $\text{div } h = f \in L^\gamma(\Omega)$, $\gamma \geq 1$
 \(\exists u \in W_0^{1,1}(\Omega) \) that solves (1).
 Stampacchia 65, Brezis-Strauss 73.
 Boccardo–Galloüet 89 ($p > 2 - \frac{1}{N}$, $\gamma = 1$)
 Boccardo–Galloüet 2012 ($1 < p < 2 - \frac{1}{N}$, $\gamma = \frac{N}{Np-N+1}$)
 Murat 94, Alvino–Mercaldo 2008

SOLA (solution obtained by approximation)
Regularity results for such a solution have been developed by Mingione (2007,2010)
1 Existence and uniqueness

- \(r = p \)
 If \(h \in L^q(\Omega, \mathbb{R}^N) \), \(\exists! u \in W^{1,p}_0(\Omega) \) that solves (1).
 Leray-Lions 65, Browder 70.

- \(r < p \), ”Existence”
 If \(\text{div } h = f \in L^\gamma(\Omega), \gamma \geq 1 \)
 \(\exists u \in W^{1,1}_0(\Omega) \) that solves (1).
 Stampacchia 65, Brezis-Strauss 73.
 Boccardo–Galloüet 89 (\(p > 2 - \frac{1}{N} \), \(\gamma = 1 \))
 Boccardo–Galloüet 2012 (\(1 < p < 2 - \frac{1}{N} \), \(\gamma = \frac{N}{Np-N+1} \))
 Murat 94, Alvino–Mercaldo 2008

SOLA (solution obtained by approximation)
Regularity results for such a solution have been developed by Mingione (2007,2010)
"\[\exists r_0 < p \text{ s.t. if } h \in L^{\frac{r}{p-1}}(\Omega, \mathbb{R}^N), \ r_0 \leq r < p \text{ then there exists } u \in W^{1,r}_0(\Omega) \text{ that solves (1)} \]

\[p = 2 \text{ Boccardo 97, Fiorenza–Sbordone 98} \]
\[p \neq 2 \text{ Iwaniec–Sbordone 2001} \]
$r < p$ "uniqueness"

SOLA solutions are unique, i.e.

"different approximating problems of (1) have the same limit solutions u"

(Dall'Aglio 96, Boccardo 97, Boccardo–Galloüet 2012)

For "distributional" solutions the uniqueness generally fails when r is far form p

(Serrin 64, Alvino 2008).
$r < p$ "uniqueness"

SOLA solutions are unique, i.e.

"different approximating problems of (1) have the same limit solutions u"

(Dall’Aglio 96, Boccardo 97, Boccardo–Galloüet 2012)

For "distributional" solutions the uniqueness generally fails when r is far form p

(Serrin 64, Alvino 2008).
If r is close to p, at the present time the problem is unclear unless for

$$p = 2$$

"$\exists r_0 < 2 < r_1$ s.t. if $h \in L^r(\Omega, \mathbb{R}^N)$, $r_0 < r < r_1$, $\exists! u \in W^{1,r}_0(\Omega)$ that solves (1)"

$$\|\nabla u\|_{L^r} \leq c \|h\|_{L^r}.$$

Previous result can be extended to operators

$$\mathcal{A}(x, \xi) \simeq b(x)\xi$$

with $b(x) \in BMO$. (Carozza-Moscariello-Passarelli di Napoli 2002).
If \(r \) is close to \(p \), at the present time the problem is unclear unless for

\[
p = 2
\]

"\(\exists r_0 < 2 < r_1 \) s.t. if \(h \in L^r(\Omega, \mathbb{R}^N) \), \(r_0 < r < r_1 \), \(\exists! u \in W^{1,r}_0(\Omega) \) that solves (1)"

\[
\| \nabla u \|_{L^r} \leq c \| h \|_{L^r}.
\]

Previous result can be extended to operators

\[
\mathcal{A}(x, \xi) \simeq b(x)\xi
\]

with \(b(x) \in BMO \).

(Carozza-Moscariello-Passarelli di Napoli 2002).
Uniqueness holds in spaces not too much larger than $W_0^{1,p}$

- $|\nabla u|$ in Grand-Lebesgue spaces (Greco–Iwaniec–Sbordone 97) i.e.
 \[u \in \cap_{0 \leq \varepsilon \leq p-1} W_0^{1,p-\varepsilon}(\Omega) \]

 and
 \[\|\nabla u\|_{L^p}(\Omega) = \sup_{0 < \varepsilon \leq p-1} \left[\varepsilon \int_\Omega |\nabla u|^{p-\varepsilon} \, dx \right]^{\frac{1}{p-\varepsilon}} < \infty \]

- $|\nabla u|$ in weak–L^N (Dolzmann–Hungerbühler–Müller 2000) i.e.
 \[\|\nabla u\|_{L^N,\infty}(\Omega) = \sup_{t>0} t \left| \{ x \in \Omega : |\nabla u| > t \} \right|^{\frac{1}{N}} < +\infty \]

 \[L^{N,\infty}(\Omega) \sim \text{weak–}L^N \]

Here we consider solutions of (1) with $|\nabla u| \in L^p \log^{-\alpha} L(\Omega)$, $\alpha > 0$, $p > 1$.

\[p \neq 2 \]
\[p \neq 2 \]

Uniqueness holds in spaces not too much larger than \(W_0^{1,p} \)

- \(|\nabla u|\) in Grand-Lebesgue spaces (Greco–Iwaniec–Sbordone 97) i.e.

\[u \in \bigcap_{0 \leq \varepsilon \leq p-1} W_0^{1,p-\varepsilon}(\Omega) \]

and

\[\|\nabla u\|_{L^p(\Omega)} = \sup_{0 < \varepsilon \leq p-1} \left[\varepsilon \int_{\Omega} |\nabla u|^{p-\varepsilon} \, dx \right]^{\frac{1}{p-\varepsilon}} < \infty \]

- \(|\nabla u|\) in weak–\(L^N\) (Dolzmann–Hungerbühler–Müller 2000) i.e.

\[\|\nabla u\|_{L^{N,\infty}(\Omega)} = \sup_{t > 0} t \{ x \in \Omega : |\nabla u| > t \} \frac{1}{N} < +\infty \]

\[L^{N,\infty}(\Omega) \simeq \text{weak–}L^N \]

Here we consider solutions of (1) with \(|\nabla u| \in L^p \log^{-\alpha} L(\Omega), \alpha > 0, p > 1.\)
$p \neq 2$

Uniqueness holds in spaces not too much larger than $W_0^{1,p}$

- $|\nabla u|$ in Grand-Lebesgue spaces (Greco–Iwaniec–Sbordone 97)
 i.e.

$$u \in \cap_{0 \leq \varepsilon \leq p-1} W_0^{1,p-\varepsilon}(\Omega)$$

and

$$\|\nabla u\|_{L^p(\Omega)} = \sup_{0 < \varepsilon \leq p-1} \left[\varepsilon \int_\Omega |\nabla u|^{p-\varepsilon} \, dx \right]^{\frac{1}{p-\varepsilon}} < \infty$$

- $|\nabla u|$ in weak–L^N (Dolzmann–Hungerbühler–Müller 2000)
 i.e.

$$\|\nabla u\|_{L^N,\infty}(\Omega) = \sup_{t>0} t \{|x \in \Omega : |\nabla u| > t\}^{\frac{1}{N}} < +\infty$$

$$L^{N,\infty}(\Omega) \simeq \text{weak–}L^N$$

Here we consider solutions of (1) with $|\nabla u| \in L^p \log^{-\alpha} L(\Omega)$,

$\alpha > 0$, $p > 1$.

$L^p \log^{-\alpha} L(\Omega)$, \quad $\alpha > 0$, \quad $p > 1$

This is the Orlicz space generated by the function

$$\Phi(t) = t^p \log^{-\alpha}(a + t), \quad t \geq 0,$$

and $a \geq e$.

\[f : \Omega \to \mathbb{R} \]

\[f \in L^p \log^{-\alpha} L(\Omega) \iff \int_{\Omega} |f|^p \log^{-\alpha}(a + |f|) \, dx < \infty. \]

The Luxemburg norm (\simeq Zygmund norm)

$$\|f\|_{L^p \log^{-\alpha} L} = \inf \left\{ \lambda > 0 : \int_{\Omega} \Phi \left(\frac{|f|}{\lambda} \right) \, dx \leq 1 \right\},$$

and $L^p \log^{-\alpha} L(\Omega)$ is a Banach space.

$$\lim_{\varepsilon \to 0} \varepsilon^{\alpha/p} \|f\|_{p-\varepsilon} = 0$$
This is the Orlicz space generated by the function

\[\Phi(t) = t^p \log^{-\alpha}(a + t), \quad t \geq 0, \]

and \(a \geq e \).

The Luxemburg norm (\(\simeq \) Zygmund norm)

\[\|f\|_{L^p \log^{-\alpha} L(\Omega)} = \inf \left\{ \lambda > 0 : \int_{\Omega} \Phi \left(\frac{|f|}{\lambda} \right) \, dx \leq 1 \right\}, \]

and \(L^p \log^{-\alpha} L(\Omega) \) is a Banach space.
This is the Orlicz space generated by the function
\[\Phi(t) = t^p \log^{-\alpha}(a + t), \quad t \geq 0, \]
and \(a \geq e \).

The Luxemburg norm (\(\simeq \) Zygmund norm)
\[\| f \|_{L^p \log^{-\alpha} L(\Omega)} = \inf \left\{ \lambda > 0 : \int_{\Omega} \Phi \left(\frac{|f|}{\lambda} \right) \, dx \leq 1 \right\}, \]
and \(L^p \log^{-\alpha} L(\Omega) \) is a Banach space.

\[\lim_{\varepsilon \to 0} \varepsilon^{\frac{\alpha}{p}} \| f \|_{p-\varepsilon} = 0 \]
\[0 < \alpha \leq 1 \quad L^p \log^{-\alpha} L \not\subset \text{weak–}L^p \quad \text{(Greco '93)} \]

\[
\text{weak–}L^p \not\subset L^p \log^{-\alpha} L
\]

\[\alpha > 1 \quad \text{weak–}L^p \subset L^p \subset L^p \log^{-\alpha} L; \]
Then we can prove the following

Theorem 1

Let $1 < p < \infty$, $p \neq 2$. For each $h \in L^q \log^{-\alpha} L(\Omega, \mathbb{R}^N)$, $0 < \alpha \leq \frac{p}{|p-2|}$, problem (1) admits a unique solution s.t. $|\nabla u| \in L^p \log^{-\alpha} L(\Omega)$. Moreover,

$$
\|\nabla u\|^p_{L^p \log^{-\alpha} L} \leq C \|h\|^p_{L^q \log^{-\alpha} L}
$$

where $C = C(N, p, \alpha, a, b)$.
For $0 < \alpha \leq \frac{p}{|p-2|}$ the operator

$$\mathcal{H} : L^q \log^{-\alpha} L(\Omega, \mathbb{R}^N) \to L^p \log^{-\alpha} L(\Omega, \mathbb{R}^N)$$

which carries h into ∇u is well defined.

- \mathcal{H} is continuous
- \mathcal{H} is uniformly continuous when $0 < \alpha < \frac{p}{|p-2|}$

$$\|\mathcal{H}u - \mathcal{H}v\|_{L^p \log^{-\alpha} L} \leq C \|h - g\|_{L^q \log^{-\alpha} L}$$

where $C = C(N, p, \alpha, a, b)$.

For $0 < \alpha \leq \frac{p}{|p-2|}$ the operator
\[\mathcal{H} : L^q \log^{-\alpha} L(\Omega, \mathbb{R}^N) \rightarrow L^p \log^{-\alpha} L(\Omega, \mathbb{R}^N) \]

which carries h into ∇u is well defined.

- \mathcal{H} is continuous
- \mathcal{H} is uniformly continuous when $0 < \alpha < \frac{p}{|p-2|}$

\[\| \mathcal{H}u - \mathcal{H}v \|_{L^p \log^{-\alpha} L} \leq C \| h - g \|_{L^q \log^{-\alpha} L} \]

where $C = C(N, p, \alpha, a, b)$.
Remark 1

For $1 < \alpha \leq \frac{p}{|p-2|}$, Theorem 1 improves the results of Greco-Iwaniec-Sbordone (97), since in this case

$$L^p) \subset L^p \log^{-\alpha} L$$

Remark 2

An improvement of Theorem 1 has been recently proved by F.Farroni (to appear)

$$|\nabla u| \in L^p \log^{-\alpha} L (\log \log L)^{-\beta}$$
Remark 1
For $1 < \alpha \leq \frac{p}{|p-2|}$, Theorem 1 improves the results of Greco-Lwaniec-Sbordone (97), since in this case

$$L^p(\log L)^{\frac{14}{51}} \subset L^p \log^{-\alpha} L$$

Remark 2
An improvement of Theorem 1 has been recently proved by F.Farroni (to appear)

$$|\nabla u| \in L^p \log^{-\alpha} L (\log \log L)^{-\beta}$$
For \(p=2 \) as a consequence of the estimates in \(L^{2 \pm \epsilon} \) and the interpolation theorem of Bennett-Rudnick we get

\[
\| \nabla u \|_{L^2 \log^{-\alpha} L} \leq c \| h \|_{L^2 \log^{-\alpha} L}
\]

for any \(-\infty < \alpha < +\infty\).

Anyway a situation similar to the case \(p \neq 2 \) occurs if we consider the problem
For $p=2$ as a consequence of the estimates in $L^{2±\epsilon}$ and the interpolation theorem of Bennett-Rudnick we get

$$\|\nabla u\|_{L^2 \log^{-\alpha} L} \leq c \|h\|_{L^2 \log^{-\alpha} L}$$

for any $-\infty < \alpha < +\infty$.

Anyway a situation similar to the case $p \neq 2$ occurs if we consider the problem
\[
\begin{aligned}
(1.1) \quad \begin{cases}
\text{div}(A(x, \nabla u) + B(x)u) = \text{div} h & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega
\end{cases}
\end{aligned}
\]

where \(B(x) \in \text{weak-}L^N(\Omega, \mathbb{R}^N) \)

\[
\int_{\Omega} \langle A(x, \nabla u) + B(x)u, \nabla \varphi \rangle \, dx = \int_{\Omega} h\nabla \varphi \, dx
\]

for any \(\varphi \in C_0^\infty(\Omega) \).

If \(u \in W^{1,2}_0(\Omega) \) then

\[
\|u\|_{2^*,2} \leq S_2 \|\nabla u\|_2
\]
\begin{align*}
\text{(1.1)} \quad \begin{cases}
\text{div}(A(x, \nabla u) + B(x)u) = \text{div} h \quad \text{in } \Omega \\
u = 0 \quad \text{on } \partial \Omega
\end{cases}
\end{align*}

where \(B(x) \in \text{weak-}L^N(\Omega, \mathbb{R}^N) \)

\[
\int_\Omega \langle A(x, \nabla u) + B(x)u, \nabla \varphi \rangle \, dx = \int_\Omega h \nabla \varphi \, dx
\]

for any \(\varphi \in C_0^\infty(\Omega). \)

If \(u \in W^{1,2}_0(\Omega) \) then

\[
\| u \|_{2^*,2} \leq S_2 \| \nabla u \|_2
\]
\[
\begin{align*}
\text{(1.1)} & \quad \begin{cases}
\text{div}(A(x, \nabla u) + B(x)u) = \text{div} h & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega
\end{cases} \\
\text{where } B(x) \in \text{weak-}L^N(\Omega, \mathbb{R}^N)
\end{align*}
\]

\[
\int_{\Omega} \langle A(x, \nabla u) + B(x)u, \nabla \varphi \rangle \, dx = \int_{\Omega} h \nabla \varphi \, dx
\]

for any \(\varphi \in C^\infty_0(\Omega) \).

If \(u \in W^{1,2}_0(\Omega) \) then

\[
\| u \|_{2^*, 2} \leq S_2 \| \nabla u \|_2
\]
The main difficulty in solving problem (1.1) is due to the noncoercivity of the operator

\[\langle \mathcal{A}u, v \rangle = \int_{\Omega} \langle A(x, \nabla u) + B(x)u, \nabla v \rangle \, dx \]

\[u, v \in \mathcal{W}^{1,2}_0. \]

(Alvino-Trombetti '82; Boccardo 2009; Droniou 2002)

Theorem 1.1 (M.)

Let \(B(x) \in \text{weak}-L^N(\Omega, \mathbb{R}^N) \). Then there exists at most one solution of (1.1) s.t. \(|\nabla u| \in L^2 \log^{-\alpha} L, \quad 0 \leq \alpha \leq 2. \)
The main difficulty in solving problem (1.1) is due to the noncoercivity of the operator

\[\langle A u, v \rangle = \int_\Omega \langle A(x, \nabla u) + B(x)u, \nabla v \rangle dx \]

\[u, v \in W_0^{1,2}. \]

(Alvino-Trombetti ’82; Boccardo 2009; Droniou 2002)

Theorem 1.1 (M.):

Let \(B(x) \in \text{weak-}L^N(\Omega, \mathbb{R}^N) \). Then there exists at most one solution of (1.1) s.t. \(|\nabla u| \in L^2 \log^{-\alpha} L, \; 0 \leq \alpha \leq 2. \)
For the existence of a solution we assume that

\[\text{dist}_{L^N, L^\infty}(B, L^\infty) < \frac{a}{4S_2} \]

(1.2)

where \(S_2 \) is the Sobolev constant, and \(a \) is the coercivity constant of \(A(x, \xi) \).

Theorem 1.2 (M.)

Assume (1.2). Then, for every \(h \in L^2 \log^{-\alpha} L \), \(0 \leq \alpha \leq 2 \), problem (1.1) admits a unique solution s.t. \(|\nabla u| \in L^2 \log^{-\alpha} L \). Moreover

\[\| \nabla u \|_{L^2 \log^{-\alpha} L} \leq c(\| h \|_{L^2 \log^{-\alpha} L} + \| B \|_{L^N, L^\infty}), \]

\(c = c(N, \alpha, a, b) \).
For the existence of a solution we assume that

$$\text{dist}_{L^N,L^\infty}(B,L^\infty) < \frac{a}{4S_2} \quad (1.2)$$

where S_2 is the Sobolev constant, and a is the coercivity constant of $A(x,\xi)$.

Theorem 1.2 (M.)

Assume (1.2). Then, for every $h \in L^2 \log^{-\alpha} L$, $0 \leq \alpha \leq 2$, problem (1.1) admits a unique solution s.t. $|\nabla u| \in L^2 \log^{-\alpha} L$. Moreover

$$\|\nabla u\|_{L^2 \log^{-\alpha} L} \leq c(\|h\|_{L^2 \log^{-\alpha} L} + \|B\|_{L^N,L^\infty}),$$

$$c = c(N,\alpha,a,b).$$
We remark that L^∞ is not dense in weak-L^N.

$$\text{dist}_{L^N,\infty}(f, L^\infty) = \inf_{g \in L^\infty} \|f - g\|_{N,\infty}$$

A formula for the distance is the following

$$\text{dist}_{L^N,\infty}(f, L^\infty) = \lim_{k \to \infty} \|f - T_k f\|_{N,\infty}, \quad (1.3)$$

where $T_k f$ is the truncation of f at the level k.

Formula (1.3) is due to Carozza - Sbordone (1997).

Remark

Condition (1.2) does not give any smallness control on the norm of B in weak-L^N.

For $f(x) = |x|^{-1}$, $\|f - T_k f\|_{L^N,\infty} = \omega_{1/N}^{1/N}$.
We remark that L^∞ is not dense in weak-L^N.

$$\text{dist}_{L^N,\infty}(f, L^\infty) = \inf_{g \in L^\infty} \|f - g\|_{N,\infty}$$

A formula for the distance is the following

$$\text{dist}_{L^N,\infty}(f, L^\infty) = \lim_{k \to \infty} \|f - T_k f\|_{N,\infty}, \quad (1.3)$$

where $T_k f$ is the truncation of f at the level k.

Formula (1.3) is due to Carozza - Sbordone (1997).

Remark

Condition (1.2) does not give any smallness control on the norm of B in weak-L^N.

For $f(x) = |x|^{-1}$, $\|f - T_k f\|_{L^N,\infty} = \omega_N^{1/N}$
2. Stability results
Our aim is to ”estimate” the distance between solutions \(u \) and \(v \) of the problem

\[
\begin{align*}
\text{div } A(x, \nabla u) &= \text{div } (|\nabla v|^{p-2} \nabla v) \quad \text{in } \Omega, \\
u &= v \quad \text{on } \partial \Omega,
\end{align*}
\]

when the operator \(A(x, \xi) \) is close to the \(p \)-Laplacian, in the sense that there exists a constant \(M > 0 \) such that

\[
|A(x, \xi) - |\xi|^{p-2}\xi| \leq M|\xi|^{p-1}
\]

for all \(\xi \in \mathbb{R}^N \), for a.e. \(x \in \Omega \).
When $\mathcal{A}(x, \xi)$ is a p–harmonic operator, i.e.

$$\mathcal{A}(x, \xi) = \langle A(x)\xi, \xi \rangle^{\frac{p-2}{2}} A(x)\xi$$

with $A : \Omega \to \mathbb{R}^{N \times N}$ a measurable, symmetric matrix field, verifying the ellipticity bounds

$$\mu |\xi|^2 \leq \langle A(x)\xi, \xi \rangle \leq \nu |\xi|^2$$

for all $\xi \in \mathbb{R}^N$, for a.e. $x \in \Omega$, $0 < \mu \leq \nu$, condition (3) is satisfied in terms of μ and ν.
Anyway, when $p \geq 2$, following the theory of quasiregular mappings, we use the pointwise inequality

$$|A(x, \xi) - |\xi|^{p-2}\xi| \leq (K_A - 1)|\xi|^{p-1}$$

(4)

that holds true for all $\xi \in \mathbb{R}^N$, for a.e. $x \in \Omega$, with K_A defined as the characteristic of the matrix $A = A(x)$

$$K_A = \text{ess sup}_{x \in \Omega} (1 + |A(x) - I|)^{\frac{p}{2}} .$$

(Iwaniec '83) $K_A \geq 1$; $K_A = 1$ iff $A \equiv I$

$K_A - 1 \simeq "distance measure"$ between the operators
For simplicity we assume \(p \geq 2 \), \(A(x, \xi) \) \(p \)-harmonic operator.

- The case \(r = p \)

If \(u, v \in W^{1,p}(\Omega) \) solve (2) then

\[
\int_{\Omega} \left\langle A(x, \nabla u) - A(x, \nabla v), \nabla u - \nabla v \right\rangle \, dx
\]

\[
= \int_{\Omega} \left\langle |\nabla v|^{p-2} \nabla v - A(x, \nabla v), \nabla u - \nabla v \right\rangle \, dx
\]
Estimate (4) + monotonicity of $A(x, \xi)$

\[\int_{\Omega} |\nabla u - \nabla v|^p dx \leq c(K_A - 1) \int_{\Omega} |\nabla v|^{p-1} |\nabla u - \nabla v| dx \]

\[\leq c(K_A - 1) \|\nabla v\|_p^{p-1} \|\nabla u - \nabla v\|_p \]

$c = c(\mu)$. Then, we can conclude

Proposition 2.1

\[\|\nabla u - \nabla v\|_p \leq c(K_A - 1)^{\frac{1}{p-1}} \|\nabla v\|_p \]
Estimate (4) + monotonicity of $\mathcal{A}(x, \xi)$

\[\downarrow\]

\[
\int_{\Omega} |\nabla u - \nabla v|^p \, dx \leq c(K_A - 1) \int_{\Omega} |\nabla v|^{p-1} |\nabla u - \nabla v| \, dx
\]

\[\leq c(K_A - 1) \|\nabla v\|_p^{p-1} \|\nabla u - \nabla v\|_p\]

c = c(\mu). Then, we can conclude

Proposition 2.1

\[\|\nabla u - \nabla v\|_p \leq c(K_A - 1)^{\frac{1}{p-1}} \|\nabla v\|_p\]
Theorem 2.2

If \(u, v \in W^{1,1}(\Omega) \), with \(| \nabla u|, | \nabla v| \in L^p \log^{-\alpha} L(\Omega) \), \(0 < \alpha < \frac{p}{p-2} \), solve (2) then

\[
\| \nabla u - \nabla v \|_{L^p \log^{-\alpha} L(\Omega)} \leq CK \frac{1-\gamma}{p-1} (K_A - 1)^{\frac{\gamma}{p-1}} \| \nabla v \|_{L^p \log^{-\alpha} L(\Omega)}
\]

where \(\gamma = 1 - \alpha \frac{p-2}{p} \) and \(C = C(N, p, \alpha, \mu, \nu) \).
We don’t know if previous theorem holds for

\[\alpha = \frac{p}{p - 2} \]

even if the uniqueness of (1) holds true in this case.

In the general case, assuming condition (3), a similar result holds true with a more hard calculation.
We don’t know if previous theorem holds for

\[\alpha = \frac{p}{p - 2} \]

even if the uniqueness of (1) holds true in this case.

In the general case, assuming condition (3), a similar result holds true with a more hard calculation.
In order to prove previous results the main tools are:

- The ’stability’ of the Hodge decomposition [Iwaniec-Sbordone]

\[|\nabla u|^{r-p}\nabla u = \nabla \phi + H \]

\[\phi \in W^{1, \frac{r}{r-p+1}}_0(\Omega), \quad H \in L^{\frac{r}{r-p+1}}(\Omega, \mathbb{R}^N), \quad \text{div } H = 0 \]

- To consider in \(L^p \log^{-\alpha} L \) a norm equivalent to the Luxemburg one
In order to prove previous results the main tools are:

- The 'stability' of the Hodge decomposition [Iwaniec-Sbordone]
 \[|\nabla u|^{r-p} \nabla u = \nabla \phi + H\]

- \(\phi \in W^{1, \frac{r}{r-p+1}}_0(\Omega), \quad H \in L^{\frac{r}{r-p+1}}(\Omega, \mathbb{R}^N), \quad \text{div } H = 0\)

- To consider in \(L^p \log^{-\alpha} L\) a norm equivalent to the Luxemburg one
Lemma 2.3 (Edmunds-Triebel; Farroni-Greco-M.)

\[f \in L^p \log^{-\alpha} L(\Omega) \text{ iff } \exists \varepsilon_0 \in (0, p - 1) \text{ s.t.} \]

\[[f]_{p,\alpha} = \left(\int_0^{\varepsilon_0} \varepsilon^{\alpha-1} \|f\|_{p-\varepsilon}^p d\varepsilon \right)^{\frac{1}{p}} < \infty. \]

Moreover \[[f]_{p,\alpha} \asymp \|f\|_{L^p \log^{-\alpha} L} \]

This norm just involves the norms of \(f \) in \(L^r, r < p \).
Proof of Theorem 2.2

Assume that u and v solve the problem

\[
\begin{align*}
(P) \begin{cases}
\text{div } A(x, \nabla u) &= \text{div } (|\nabla v|^{p-2} \nabla v) \quad \text{in } \Omega, \\
u &= v \quad \text{on } \partial \Omega,
\end{cases}
\end{align*}
\]

s.t. $|\nabla u|, |\nabla v| \in L^p \log^{-\alpha} L(\Omega)$.

Then $|\nabla u|, |\nabla v| \in L^r(\Omega)$ for any $1 < r < p$. For $r = p - \varepsilon p$, $0 < \varepsilon < \varepsilon_p = p - r_0$, we may use the Hodge Decomposition of the vector field

\[
|\nabla u - \nabla v|^{-\varepsilon p}(\nabla u - \nabla v) = \nabla \phi + H
\]

with

\[
\phi \in \mathcal{W}^{1, \frac{p-\varepsilon p}{1-\varepsilon p}}_0(\Omega), \quad \text{and} \quad H \in L^{\frac{p-\varepsilon p}{1-\varepsilon p}}(\Omega) \quad \text{s.t. div } H = 0.
\]
Moreover the following estimates hold (Iwaniec-Sbordone 92-94):

(i) \[\| \nabla \phi \|_{p-\varepsilon p \over 1-\varepsilon p} \leq C(N, p) \| \nabla u - \nabla v \|_{p-\varepsilon p}^{1-\varepsilon p} \]

(ii) \[\| H \|_{p-\varepsilon p \over 1-\varepsilon p} \leq C(N, p) \varepsilon \| \nabla u - \nabla v \|_{p-\varepsilon p}^{1-\varepsilon p}. \]

By definition of solution, we are legitimate to use \(\phi \) as test function in \((P)\)

\[
\int_{\Omega} \langle A(x, \nabla u) - A(x, \nabla v), \nabla \phi \rangle \, dx \\
= \int_{\Omega} \langle |\nabla v|^{p-2} \nabla v - A(x, \nabla v), \nabla \phi \rangle \, dx.
\]
Moreover the following estimates hold (Iwaniec-Sbordone 92-94):

(i) \(\| \nabla \phi \|_{p-\epsilon p}^{\frac{1}{1-\epsilon p}} \leq C(N, p) \| \nabla u - \nabla v \|_{p-\epsilon p}^{1-\epsilon p} \)

(ii) \(\| H \|_{p-\epsilon p}^{\frac{1}{1-\epsilon p}} \leq C(N, p) \epsilon \| \nabla u - \nabla v \|_{p-\epsilon p}^{1-\epsilon p} \).

By definition of solution, we are legitimate to use \(\phi \) as test function in \((P) \)

\[
\int_{\Omega} \langle A(x, \nabla u) - A(x, \nabla v), \nabla \phi \rangle \, dx \\
= \int_{\Omega} \langle |\nabla v|^{p-2} \nabla v - A(x, \nabla v), \nabla \phi \rangle \, dx.
\]
Then, by the coercivity we have

\[\| \nabla u - \nabla v \|_{p-\varepsilon p}^{p-\varepsilon p} \leq \int_\Omega \langle A(x, \nabla u) - A(x, \nabla v), (\nabla u - \nabla v)|\nabla u - \nabla v|^{\varepsilon p} \rangle \, dx \]

\[\leq \frac{C(N, p)}{a} \left\{ \int_\Omega \langle |\nabla v|^{p-2}|\nabla v| - A(x, \nabla v), \nabla \phi \rangle \, dx \right\} \]

\[+ \int_\Omega |A(x, \nabla u) - A(x, \nabla v)||H| \, dx \]
From (4) and (ii) with the aid of Hölder inequality we get the following estimate:

\[\| \nabla u - \nabla v \|_{p-\varepsilon p}^p \leq C \left[(K_A - 1)^{\frac{p}{p-1}} \| \nabla v \|_{p-\varepsilon p}^p + \varepsilon^{\frac{p}{p-2}} \| \nabla |u| + |\nabla v| \|_{p-\varepsilon p}^p \right] \]

that implies for \(\varepsilon_p \) sufficiently small

\[\| \nabla u - \nabla v \|_{p-\varepsilon p}^p \leq C \left[(K_A - 1)^{\frac{p}{p-1}} + \varepsilon^{\frac{p}{p-2}} \right] \| \nabla v \|_{p-\varepsilon p}^p \]

for \(0 < \varepsilon < \varepsilon_p \) and \(C = C(p, N, \mu, \nu) \).

We multiply by \(\varepsilon^{\alpha-1} \) and integrate with respect to \(\varepsilon \) on \((0, \vartheta \varepsilon_p), \vartheta \in (0, 1] \)
From (4) and (ii) with the aid of Hölder inequality we get the following estimate:

\[
\| \nabla u - \nabla v \|^p_{p-\varepsilon p} \leq C \left[(K_A - 1)^{\frac{p}{p-1}} \| \nabla v \|^p_{p-\varepsilon p} + \varepsilon^{\frac{p}{p-2}} \| \nabla u + |\nabla v| \|^p_{p-\varepsilon p} \right]
\]

that implies for \(\varepsilon_p \) sufficiently small

\[
\| \nabla u - \nabla v \|^p_{p-\varepsilon p} \leq C \left[(K_A - 1)^{\frac{p}{p-1}} + \varepsilon^{\frac{p}{p-2}} \right] \| \nabla v \|^p_{p-\varepsilon p}
\]

for \(0 < \varepsilon < \varepsilon_p \) and \(C = C(p, N, \mu, \nu) \).

We multiply by \(\varepsilon^{\alpha-1} \) and integrate with respect to \(\varepsilon \) on \((0, \vartheta \varepsilon_p), \vartheta \in (0, 1] \)
From (4) and (ii) with the aid of Hölder inequality we get the following estimate:

\[\| \nabla u - \nabla v \|^p_{p-\varepsilon p} \leq C \left[(K_A - 1)^{\frac{p}{p-1}} \| \nabla v \|^p_{p-\varepsilon p} + \varepsilon^{\frac{p}{p-2}} \| |\nabla u| + |\nabla v| \|^p_{p-\varepsilon p} \right] \]

that implies for \(\varepsilon_p \) sufficiently small

\[\| \nabla u - \nabla v \|^p_{p-\varepsilon p} \leq C \left[(K_A - 1)^{\frac{p}{p-1}} + \varepsilon^{\frac{p}{p-2}} \right] \| \nabla v \|^p_{p-\varepsilon p} \]

for \(0 < \varepsilon < \varepsilon_p \) and \(C = C(p, N, \mu, \nu) \).

We multiply by \(\varepsilon^{\alpha-1} \) and integrate with respect to \(\varepsilon \) on \((0, \vartheta \varepsilon_p), \vartheta \in (0, 1] \)
\[
\int_0^{\vartheta \varepsilon_p} \varepsilon^{\alpha - 1} \| \nabla u - \nabla v \|^p_{p - \varepsilon_p} \, d\varepsilon \leq C \left[(K_A - 1)^{\frac{p}{p-1}} \int_0^{\vartheta \varepsilon_p} \varepsilon^{\alpha - 1} \| \nabla v \|^p_{p - \varepsilon_p} \, d\varepsilon \\
+ \int_0^{\vartheta \varepsilon_p} \varepsilon^{\frac{p}{p-2} + \alpha - 1} \| \nabla v \|^p_{p - \varepsilon_p} \, d\varepsilon \right] \\
\leq C \left[(K_A - 1)^{\frac{p}{p-1}} \frac{1}{p^\alpha} \int_0^{\varepsilon_0} \delta^{\alpha - 1} \| \nabla v \|^p_{p - \delta} \, d\delta \\
+ \frac{\vartheta^{\frac{p}{p-2} + \alpha} \varepsilon_p^{\frac{p}{p-2}}}{p^\alpha} \int_0^{\varepsilon_0} \delta^{\alpha - 1} \| \nabla v \|^p_{p - \delta} \, d\delta \right]
\]

where \(\varepsilon_0 = p \varepsilon_p, \delta = \frac{\varepsilon_p}{p - 1}. \)
On the other hand, since for $\tau = \frac{\varepsilon p}{\theta} \geq \varepsilon p$
\[
\|\nabla u - \nabla v\|_{p-\varepsilon p}^p \geq \|\nabla u - \nabla v\|_{p-\tau}^p
\]
we have that the integral in the left hand side
\[
\int_0^{\vartheta \varepsilon} \varepsilon^{\alpha - 1}\|\nabla u - \nabla v\|_{p-\varepsilon p}^p \, d\varepsilon \geq \left(\frac{\vartheta}{p}\right)^\alpha \int_0^{\varepsilon_0} \tau^{\alpha - 1}\|\nabla u - \nabla v\|_{p-\tau}^p \, d\tau
\]
Then by Lemma 2.3 we get that
\[
\vartheta^\alpha \|\nabla u - \nabla v\|_{L^p \log^{-\alpha} L}^p
\leq C \left\{ (K_A - 1)^{\frac{p}{p-1}} \|\nabla v\|_{L^p \log^{-\alpha} L}^p + \vartheta^{\frac{p}{p-2}} \|\nabla v\|_{L^p \log^{-\alpha} L}^p \right\}
\]
The conclusion follows by choosing
\[
\vartheta^{\frac{p}{p-2}} = \left(\frac{K_A - 1}{K_A}\right)^{\frac{p}{p-1}}.
\]
On the other hand, since for $\tau = \frac{\varepsilon p}{\theta} \geq \varepsilon p$

$$\|\nabla u - \nabla v\|_{p-\varepsilon p}^{p} \geq \|\nabla u - \nabla v\|_{p-\tau}^{p}$$

we have that the integral in the left hand side

$$\int_{0}^{\varepsilon p} \varepsilon^{\alpha-1} \|\nabla u - \nabla v\|_{p-\varepsilon p}^{p} \, d\varepsilon \geq \left(\frac{\vartheta}{p}\right)^{\alpha} \int_{0}^{\varepsilon 0} \tau^{\alpha-1} \|\nabla u - \nabla v\|_{p-\tau}^{p} \, d\tau$$

Then by Lemma 2.3 we get that

$$\vartheta^{\alpha} \|\nabla u - \nabla v\|_{L^{p} \log^{-\alpha} L}^{p} \leq C \left\{ (K_{A} - 1)^{\frac{p}{p-1}} \|\nabla v\|_{L^{p} \log^{-\alpha} L}^{p} + \vartheta^{\frac{p}{p-2}} \|\nabla v\|_{L^{p} \log^{-\alpha} L}^{p} \right\}$$

The conclusion follows by choosing

$$\vartheta^{\frac{p}{p-2}} = \left(\frac{K_{A} - 1}{K_{A}}\right)^{\frac{p}{p-1}}.$$
On the other hand, since for $\tau = \frac{\varepsilon p}{\theta} \geq \varepsilon p$

$$\|\nabla u - \nabla v\|_{p-\varepsilon p}^p \geq \|\nabla u - \nabla v\|_{p-\tau}^p$$

we have that the integral in the left hand side

$$\int_0^{\vartheta \varepsilon_p} \varepsilon^\alpha \|\nabla u - \nabla v\|_{p-\varepsilon p}^p \, d\varepsilon \geq \left(\frac{\vartheta}{p} \right)^\alpha \int_0^{\varepsilon_0} \tau^\alpha \|\nabla u - \nabla v\|_{p-\tau}^p \, d\tau$$

Then by Lemma 2.3 we get that

$$\vartheta^\alpha \|\nabla u - \nabla v\|_{L^p \log^{-\alpha} L}^p \leq C \left\{ (K_A - 1)^{\frac{p}{p-1}} \|\nabla v\|_{L^p \log^{-\alpha} L}^p + \vartheta^{\frac{p}{p-2}} \|\nabla v\|_{L^p \log^{-\alpha} L}^p \right\}$$

The conclusion follows by choosing

$$\vartheta^{\frac{p}{p-2}} = \left(\frac{K_A - 1}{K_A} \right)^{\frac{p}{p-1}}.$$
3. An application

Let $\Omega \subset \mathbb{R}^N$, $N \geq 2$, be a bounded open set.

If $f : \Omega \rightarrow \mathbb{R}^N$ is a map in $W^{1,N-1}_{loc}(\Omega, \mathbb{R}^N)$ s.t. $|\text{adj } Df| \in L^{\frac{N}{N-1}}_{loc}(\Omega)$ then

$$N\omega_N^{\frac{1}{N}} \left| \int_{B_r(x_0)} J_f(x) \, dx \right|^{\frac{N-1}{N}} \leq \int_{\partial B_r(x_0)} |\text{adj } Df| \, d\mathcal{H}^{N-1}$$

for each ball $B_r(x_0) \subset \subset \Omega$ and for a.e. $x_0 \in \Omega$ and a.e. r.

Here $\text{adj } Df = (\text{cof } Df)^t$, $J_f = \det Df$.

ω_N is the measure of the unit ball of \mathbb{R}^N.
3. An application
Let \(\Omega \subset \mathbb{R}^N, N \geq 2 \), be a bounded open set.

If \(f : \Omega \to \mathbb{R}^N \) is a map in \(W^{1,N-1}_{loc}(\Omega, \mathbb{R}^N) \) s.t.
\[
|\text{adj } Df| \in L^{N-1}_{loc}(\Omega)
\]
then
\[
N \omega_N^{\frac{1}{N}} \left| \int_{B_r(x_0)} J_f(x) \, dx \right|^{\frac{N-1}{N}} \leq \int_{\partial B_r(x_0)} |\text{adj } Df| \, d\mathcal{H}^{N-1}
\] (5)

for each ball \(B_r(x_0) \subset \subset \Omega \) and for a.e. \(x_0 \in \Omega \) and a.e. \(r \).

Here \(\text{adj } Df = (\text{cof } Df)^t \) \(J_f = \det Df \)

\(\omega_N \) is the measure of the unit ball of \(\mathbb{R}^N \).
Inequality (5) is known as the "the integral form" of the isoperimetric inequality.

- Müller-Qi-Yan (94)
- Farroni–M. (2014) best constant in (5)

The isoperimetric inequality states that

$$N \omega_1 \frac{1}{N} |E|^{\frac{N}{N-1}} \leq \mathcal{P}(E)$$

for every Borel set E of \mathbb{R}^N.

Quantitative versions by Fuglede 89, Fusco–Maggi–Pratelli ’08, Figalli–Maggi–Pratelli ’10

Assumptions on f and Hadamard’s inequality

$$|J_f| \leq |\text{adj } Df|^{\frac{N}{N-1}} \leq |Df|^N$$

imply that

$$J_f \in L^1_{\text{loc}}(\Omega)$$

$$J_f \in \mathcal{H}^1_{\text{loc}}(\Omega) \quad (\text{Iwaniec–Onninen 2002})$$
Inequality (5) is known as the "the integral form" of the isoperimetric inequality.

- Müller-Qi-Yan (94)
- Farroni–M. (2014) best constant in (5)

The isoperimetric inequality states that

\[N \omega \frac{1}{N} |E| \frac{N}{N-1} \leq \mathcal{P}(E) \]

for every Borel set E of \mathbb{R}^N

Quantitative versions by Fuglede 89, Fusco–Maggi–Pratelli ’08, Figalli–Maggi–Pratelli ’10

Assumptions on f and Hadamard’s inequality

\[|J_f| \leq |\text{adj } Df| \frac{N}{N-1} \leq |Df|^N \]

imply that

\[J_f \in L^1_{\text{loc}}(\Omega) \]

\[J_f \in H^1_{\text{loc}}(\Omega) \quad \text{(Iwaniec–Onninen 2002)} \]
Inequality (5) is known as the "the integral form" of the isoperimetric inequality.

- Müller-Qi-Yan (94)
- Farroni–M. (2014) best constant in (5)

The isoperimetric inequality states that

$$N\omega_1^\frac{1}{N}|E|^{\frac{N}{N-1}} \leq \mathcal{P}(E)$$

for every Borel set E of \mathbb{R}^N

Quantitative versions by Fuglede 89, Fusco–Maggi–Pratelli ’08, Figalli–Maggi–Pratelli ’10

Assumptions on f and Hadamard’s inequality

$$|J_f| \leq |\text{adj } Df|^{\frac{N}{N-1}} \leq |Df|^N$$

imply that

$$J_f \in L^1_{\text{loc}}(\Omega)$$

$$J_f \in \mathcal{H}^1_{\text{loc}}(\Omega) \quad (\text{Iwaniec–Onninen 2002})$$
The case of equality in (5)

Assume that equality occurs in (5), i.e.

\[
\left| \int_{B_r(x_0)} J_f(x) \, dx \right|^{\frac{N-1}{N}} = \int_{\partial B_r(x_0)} |\text{adj} \, Df| \, d\mathcal{H}^{N-1}
\]

for each ball \(B_r(x_0) \subset \subset \Omega \), for a.e. \(x_0 \in \Omega \) and for a.e. \(r \).

Theorem 3.1 (Farroni–M.)

Let \(\Omega \subset \mathbb{R}^N \) be a bounded domain. Assume that \(f : \Omega \to \mathbb{R}^N \) is a continuous, one-to-one mapping satisfying (6); then

either \(J_f \geq 0 \) a.e. in \(\Omega \) or \(J_f \leq 0 \) a.e. in \(\Omega \).

Main tools for the proof are the area formula and Sobolev inequality for BV functions.
The case of equality in (5)

Assume that equality occurs in (5), i.e.

\[
\left| \int_{B_r(x_0)} J_f(x) \, dx \right|^{\frac{N-1}{N}} = \int_{\partial B_r(x_0)} |\text{adj } Df| \, d\mathcal{H}^{N-1}
\]

(6)

for each ball \(B_r(x_0) \subset \subset \Omega \), for a.e. \(x_0 \in \Omega \) and for a.e. \(r \).

Theorem 3.1 (Farroni–M.)

Let \(\Omega \subset \mathbb{R}^N \) be a bounded domain. Assume that \(f : \Omega \to \mathbb{R}^N \) is a continuous, one-to-one mapping satisfying (6); then

either \(J_f \geq 0 \) a.e. in \(\Omega \) or \(J_f \leq 0 \) a.e. in \(\Omega \).

Main tools for the proof are the area formula and Sobolev inequality for BV functions.
If $N \geq 3$ and f is a homeomorphism satisfying (6) then f is the restriction to Ω of a Möbius transform of $\overline{\mathbb{R}}^N$. More precisely, $f \in W^{1,N}_{loc}(\Omega, \mathbb{R}^N)$ and has the form

$$f(x) = b + \frac{\lambda A(x - a)}{|x - a|^{\alpha}},$$

where $a \in \mathbb{R}^N \setminus \Omega$, $b \in \mathbb{R}^N$, $\lambda \in \mathbb{R}$, A is an orthogonal matrix and α is either 0 or 2.

For $N = 2$ f is harmonic.

As a consequence we get the following

Proposition 3.2

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain, $N \geq 2$, and let $f \in W^{1,N-1}(\Omega, \mathbb{R}^N)$ be a homeomorphism. Assume that (6) holds and $f = Id$ on $\partial \Omega$. Then

$$f = Id \quad \text{in } \Omega$$
If $N \geq 3$ and f is a homeomorphism satisfying (6) then f is the restriction to Ω of a Möbius transform of \mathbb{R}^N. More precisely, $f \in W_{loc}^{1,N}(\Omega, \mathbb{R}^N)$ and has the form

$$f(x) = b + \frac{\lambda A(x - a)}{|x - a|^{\alpha}},$$

where $a \in \mathbb{R}^N \setminus \Omega$, $b \in \mathbb{R}^N$, $\lambda \in \mathbb{R}$, A is an orthogonal matrix and α is either 0 or 2.

For $N = 2$ f is harmonic

As a consequence we get the following

Proposition 3.2

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain, $N \geq 2$, and let $f \in W^{1,N-1}(\Omega, \mathbb{R}^N)$ be a homeomorphism. Assume that (6) holds and $f = Id$ on $\partial \Omega$. Then

$$f = Id \quad \text{in} \ \Omega.$$
If $N \geq 3$ and f is a homeomorphism satisfying (6) then f is the restriction to Ω of a Möbius transform of $\overline{\mathbb{R}}^N$. More precisely, $f \in W^{1,N}_{loc}(\Omega, \mathbb{R}^N)$ and has the form

$$f(x) = b + \frac{\lambda A(x - a)}{|x - a|^\alpha},$$

where $a \in \mathbb{R}^N \setminus \Omega$, $b \in \mathbb{R}^N$, $\lambda \in \mathbb{R}$, A is an orthogonal matrix and α is either 0 or 2.

For $N = 2$ f is harmonic

As a consequence we get the following

Proposition 3.2

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain, $N \geq 2$, and let $f \in W^{1,N-1}(\Omega, \mathbb{R}^N)$ be a homeomorphism. Assume that (6) holds and $f = Id$ on $\partial \Omega$. Then

$$f = Id \quad \text{in } \Omega$$
In view of inequality (5) a natural question is to "measure the distance" between a mapping $f \in W^{1,N-1}_{1oc}(\Omega, \mathbb{R}^N)$, with $J_f \geq 0$ a.e. in Ω, satisfying "equality" (6) and a mapping $g \in W^{1,N-1}_{1oc}(\Omega, \mathbb{R}^N)$, with $J_g \geq 0$ a.e. in Ω, whenever $\exists M \geq 1$ s.t.

$$\int_{\partial B_r(x_0)} |\text{adj } Dg| \, d\mathcal{H}^{N-1} \leq M \left(\int_{B_r(x_0)} J_g(x) \, dx\right)^{\frac{N-1}{N}} \quad (7)$$

for each ball $B_r(x_0) \subset \subset \Omega$, for a.e. $x_0 \in \Omega$.

Inequality (7) can be considered as a quantitative version of (5).
In view of inequality (5) a natural question is to ”measure the distance” between a mapping \(f \in W_{1,\text{loc}}^{1,N-1}(\Omega, \mathbb{R}^N) \), with \(J_f \geq 0 \) a.e. in \(\Omega \), satisfying ”equality” (6) and a mapping \(g \in W_{1,\text{loc}}^{1,N-1}(\Omega, \mathbb{R}^N) \), with \(J_g \geq 0 \) a.e. in \(\Omega \), whenever \(\exists M \geq 1 \) s.t.

\[
\int_{\partial B_r(x_0)} |\text{adj} \ Dg| \ d\mathcal{H}^{N-1} \leq M \left(\int_{B_r(x_0)} J_g(x) \, dx \right)^{\frac{N-1}{N}} \tag{7}
\]

for each ball \(B_r(x_0) \subset \subset \Omega \), for a.e. \(x_0 \in \Omega \).

Inequality (7) can be considered as a quantitative version of (5).
In view of inequality (5) a natural question is to ”measure the distance” between a mapping $f \in W^{1,N-1}_{loc}(\Omega, \mathbb{R}^N)$, with $J_f \geq 0$ a.e. in Ω, satisfying ”equality” (6) and a mapping $g \in W^{1,N-1}_{loc}(\Omega, \mathbb{R}^N)$, with $J_g \geq 0$ a.e. in Ω, whenever $\exists M \geq 1$ s.t.

$$\int_{\partial B_r(x_0)} |\text{adj } Dg| \, d\mathcal{H}^{N-1} \leq M \left(\int_{B_r(x_0)} J_g(x) \, dx \right)^{\frac{N-1}{N}} \tag{7}$$

for each ball $B_r(x_0) \subset \subset \Omega$, for a.e. $x_0 \in \Omega$.

Inequality (7) can be considered as a quantitative version of (5).
"Measure the distance"

\[M \sim 1 \quad \implies \quad \| Df - Dg \| \sim 0 \]

From now on \(\Omega \) is a bounded Lipschitz domain in \(\mathbb{R}^N \) and we assume

\[|\text{adj} \, Df|, |\text{adj} \, Dg| \in L^{\frac{N}{N-1}}(\Omega) \]

\[J_f, J_g \geq 0 \quad \text{a.e. in } \Omega \]
"Measure the distance"

\[M \simeq 1 \implies \| Df - Dg \| \simeq 0 \]

From now on \(\Omega \) is a bounded Lipschitz domain in \(\mathbb{R}^N \) and we assume

\[|\mathrm{adj} \, Df|, |\mathrm{adj} \, Dg| \in L^{\frac{N}{N-1}}(\Omega) \]

\[J_f, J_g \geq 0 \quad \text{a.e. in } \Omega \]
Proposition 3.3

Let $f, g \in W^{1,N-1}(\Omega, \mathbb{R}^N)$. Assume that f and g satisfy relations (6) and (7) respectively

\[
\left(\int_{B_r(x_0)} J_f(x) \, dx \right)^{\frac{N-1}{N}} = \int_{\partial B_r(x_0)} |\text{adj} \, Df| \, d\mathcal{H}^{N-1} \tag{6}
\]

\[
\int_{\partial B_r(x_0)} |\text{adj} \, Dg| \, d\mathcal{H}^{N-1} \leq M \left(\int_{B_r(x_0)} J_g(x) \, dx \right)^{\frac{N-1}{N}} \tag{7}
\]

and $f = g$ on $\partial \Omega$.

Then f^i and g^i, $i \in \{1, \ldots, N\}$, solve the problem

\[
\begin{cases}
\text{div} \, A(x, \nabla g^i) = \text{div} \left(|\nabla f^i|^{N-2} \nabla f^i \right) \quad \text{in } \Omega, \\
g^i = f^i \quad \text{on } \partial \Omega,
\end{cases} \tag{8}
\]

where
Proposition 3.3

Let \(f, g \in W^{1,N-1}(\Omega, \mathbb{R}^N) \). Assume that \(f \) and \(g \) satisfy relations (6) and (7) respectively

\[
\left(\int_{B_r(x_0)} J_f(x) \, dx \right)^{\frac{N-1}{N}} = \int_{\partial B_r(x_0)} \| \text{adj} \, Df \| \, d\mathcal{H}^{N-1}
\]

and

\[
\int_{\partial B_r(x_0)} \| \text{adj} \, Dg \| \, d\mathcal{H}^{N-1} \leq M \left(\int_{B_r(x_0)} J_g(x) \, dx \right)^{\frac{N-1}{N}}
\]

and \(f = g \) on \(\partial \Omega \).

Then \(f^i \) and \(g^i, i \in \{1, \ldots, N\} \), solve the problem

\[
\begin{cases}
\text{div} \, \mathcal{A}(x, \nabla g^i) = \text{div} \left(|\nabla f^i|^{N-2} \nabla f^i \right) \quad \text{in } \Omega, \\
g^i = f^i \quad \text{on } \partial \Omega,
\end{cases}
\]

where
\[\mathcal{A}(x, \xi) = \langle A_g(x)\xi, \xi \rangle^{\frac{N-2}{2}} A_g(x)\xi \]

for a.e. \(x \in \Omega \), for every \(\xi \in \mathbb{R}^N \) and

\[
A_g(x) = \begin{cases}
\frac{(\text{Adj } Dg) (\text{Adj } Dg)^t}{J_g(x)^2(N-2)/N} & \text{if } J_g(x) > 0, \\
\text{Id} & \text{if } J_g(x) = 0,
\end{cases}
\]

(9)

\(A(x, g) \equiv A_g(x) \) is the inverse of the so called "distortion tensor" of \(g \), and satisfies

\[
\mu |\xi|^2 \leq \langle A_g(x)\xi, \xi \rangle \leq \nu |\xi|^2,
\]

\[
\mu = \mu(N, M) \quad \nu = \nu(N, M)
\]

for a.e. \(x \in \Omega \), for every \(\xi \in \mathbb{R}^N \).
\[A(x, \xi) = \langle A_g(x)\xi, \xi \rangle^{\frac{N-2}{2}} A_g(x)\xi \]

for a.e. \(x \in \Omega \), for every \(\xi \in \mathbb{R}^N \) and

\[
A_g(x) = \begin{cases}
\frac{(Adj \, Dg) \, (Adj \, Dg)^t}{J_g(x)^{2(N-2)/N}} & \text{if } J_g(x) > 0, \\
Id & \text{if } J_g(x) = 0,
\end{cases}
\]

(9)

\(A(x, g) \equiv A_g(x) \) is the inverse of the so called "distortion tensor" of \(g \), and satisfies

\[
\mu |\xi|^2 \leq \langle A_g(x)\xi, \xi \rangle \leq \nu |\xi|^2,
\]

\[
\mu = \mu(N, M) \quad \nu = \nu(N, M)
\]

for a.e. \(x \in \Omega \), for every \(\xi \in \mathbb{R}^N \).
(8) holds in the "distributional" sense, i.e.

\[\int_{\Omega} \langle A(x, \nabla g^i), \nabla \varphi \rangle dx = \int_{\Omega} \langle |\nabla f^i|^{N-2} \nabla f^i, \nabla \varphi \rangle dx \]

for every \(\varphi \in C_0^\infty(\Omega) \).
Then by Proposition 2.1 we get the following result

Proposition 3.4

Let $f, g \in W^{1,N}(\Omega, \mathbb{R}^N)$. Assume that (6) and (7) hold and $f = g$ on $\partial \Omega$. Then

$$\|\nabla f^i - \nabla g^i\|_N \leq C \left(M^{N-1} - 1 \right)^{\frac{1}{N-1}} \|\nabla f^i\|_N$$

where $C = C(N)$, $i \in \{1, \ldots, N\}$.
Then by Proposition 2.1 we get the following result

Proposition 3.4

Let $f, g \in W^{1,N}(\Omega, \mathbb{R}^N)$. Assume that (6) and (7) hold and $f = g$ on $\partial \Omega$. Then

$$\|\nabla f^i - \nabla g^i\|_N \leq C \left(M^{N-1} - 1 \right)^{\frac{1}{N-1}} \|\nabla f^i\|_N$$

where $C = C(N)$, $i \in \{1, \ldots, N\}$.
For $M = 1$, we get the following uniqueness result

Corollary 1

Let $f, g \in W^{1,N}(\Omega, \mathbb{R}^N)$ satisfy (6). If $f = g$ on $\partial\Omega$ then $f = g$ in Ω.

Remark The result is sharp. Indeed, for $g \equiv Id$ it is possible to find a mapping f s.t. $f = Id$ on $\partial\Omega$, equality (6) holds for some $x_0 \in \Omega$ and some radius r, but f is not the identity map.
For $M = 1$, we get the following uniqueness result

Corollary 1

Let $f, g \in W^{1,N}(\Omega, \mathbb{R}^N)$ satisfy (6). If $f = g$ on $\partial\Omega$ then $f = g$ in Ω.

Remark The result is sharp. Indeed, for $g \equiv Id$ it is possible to find a mapping f s.t. $f = Id$ on $\partial\Omega$, equality (6) holds for some $x_0 \in \Omega$ and some radius r, but f is not the identity map.
Theorem 3.2

Let \(f, g \in W^{1,1}(\Omega, \mathbb{R}^N) \). Assume that

\[
Df, Dg \in L^N \log^{-\alpha} L(\Omega, \mathbb{R}^{N \times N}) \quad 0 < \alpha < \frac{N}{N - 2}
\]

and satisfy (6) and (7), respectively, \(f = g \) on \(\partial \Omega \), then

\[
\| \nabla f^i - \nabla g^i \|_{L^N \log^{-\alpha} L(\Omega)} \leq CM^{1-\gamma} (M^{N-1} - 1)^{\frac{\gamma}{N-1}} \| \nabla f^i \|_{L^N \log^{-\alpha} L(\Omega)}
\]

where \(C = C(N, \alpha) > 0 \) and \(\gamma = 1 - \alpha \frac{N-2}{N}, \, i \in \{1, \ldots, N\} \).
An estimate in a parabolic problem

Let us consider the problem

\[
\begin{cases}
 u_t - \text{div}\mathcal{A}(x, t) \nabla u = -\text{div} h & \text{in } \Omega \times (0, +\infty) \\
 u = 0 & \text{on } \partial\Omega \times (0, +\infty) \\
 u(\cdot, 0) = u_0 & \text{in } \Omega
\end{cases}
\]

where \(\mathcal{A}(x, t) \) is a Carathéodory function satisfying, for a.e. \((x, t) \in \Omega \times (0, +\infty) \) and for all \(\xi \in \mathbb{R}^N \)

\[
\langle \mathcal{A}(x, t)\xi, \xi \rangle \geq \alpha |\xi|^2 \quad \alpha > 0
\]

\(|\mathcal{A}(x, t)| \leq M. \]

We assume that \(h = h(x) \in L^2(\Omega, \mathbb{R}^N) \)
Now we consider the Dirichlet problem

\[
(b) \quad \begin{cases}
\quad \text{div}\mathcal{B}(x)\nabla v = \text{div}\, h & \text{in } \Omega \\
\quad v = 0 & \text{on } \partial \Omega
\end{cases}
\]

where \(\mathcal{B}(x) \) is a measurable function s.t. for a.e. \(x \in \Omega \) and for all \(\xi \in \mathbb{R}^N \)

\[
\langle \mathcal{B}(x)\xi, \xi \rangle \geq \beta |\xi|^2, \quad |\mathcal{B}(x)| \leq M_1.
\]

Let us define

\[
H(t) = \|A(x, t) - \mathcal{B}(x)\|_{L^\infty(\Omega)}.
\]
Theorem

Let \(u \in L^2_{\text{loc}}((0, +\infty); H^1_0(\Omega)) \) and \(v \in H^1_0(\Omega) \) solutions of problems (a) and (b) respectively. If \(H(t) \in L^2_{\text{loc}}(0, +\infty) \), then for every \(t \in (0, +\infty) \)

\[
\| u(\cdot, t) - v \|_{L^2(\Omega)}^2 \leq \left[\| u_0 - v \|_{L^2(\Omega)}^2 + \| \nabla v \|_{L^2(\Omega)}^2 \alpha^{-1} \right. \\
\left. \int_0^t H^2(s) e^{cs} \, ds \right] e^{-ct}
\]

where \(c = \frac{\alpha}{c_P} \) and \(c_P \) is the constant in Poincaré-inequality.
Remark 1

If $H \in L^2(0, +\infty)$ then

$$
\|u(\cdot, t) - v\|_{L^2(\Omega)}^2 \leq \|u_0 - v\|_{L^2(\Omega)}^2 e^{-ct} + \|
abla v\|_{L^2(\Omega)}^2 \alpha^{-1} \int_0^{+\infty} H^2(s) ds
$$

Remark 2

If

$$
\int_0^{+\infty} H^2(s) e^{cs} ds < \infty,
$$

then

$$
\lim_{t \to \infty} \|u(\cdot, t) - v\|_{L^2(\Omega)} = 0
$$
THANK YOU FOR YOUR ATTENTION!